
Nonlinear Estimation Techniques for Navigation

Michael J. Veth
Veth Research Associates, LLC

Niceville, FL 32578
USA

michael.veth@vethresearch.com

ABSTRACT

Optimal  estimation  techniques  have  revolutionized  the  integration  of  multiple  sensors  for  navigation
applications.  These estimation techniques typically make assumptions about the sensor measurements, namely
the sensor measurements and errors are well modeled as linear, Gaussian systems.  Unfortunately, there is a
large class of potential navigation sources which are non-linear, non-Gaussian or both.  This motivates the
development and exploration of nonlinear estimation techniques suitable for integrated navigation systems.

This paper presents an overview of estimation techniques suitable for systems with nonlinearities which are not
well-suited to traditional linear or extended Kalman filter algorithms.  The paper begins with a description of
the generalized recursive estimation problem and associated notation and conventions.   Next, the limitations of
applying linear theory to nonlinear problems are addressed, along with techniques for compensating for these
adverse  effects,  including  a  brief  overview  of  the  traditional  extended  Kalman  filter.  In  addition,  the
mathematical effects of system nonlinearities on random processes are presented along with computational
techniques for efficiently capturing this information, which serves as the foundation for the development of many
nonlinear estimators.  Next, the unscented Kalman filter (UKF) and particle filters (PF) are presented and
analyzed.  Common limitations of nonlinear estimators are addressed and hybrid solutions are discussed.  The
paper concludes with a discussion and qualitative comparison of  the strengths and weaknesses of  various
recursive estimation techniques from linear Kalman filtering to particle filtering,  and their applicability to
various problem spaces related to military navigation requirements.
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1.0 INTRODUCTION AND BACKGROUND

Military leaders have long understood the need for reliable, accurate navigation information. The ability to
answer  the  simple  question of  “Where am I?” is  fundamental  to  the  classical  Clausewitzean principles  of
offensive, maneuver, economy of force, and mass. As such, nations have invested significant resources into the
development of robust navigation solutions.  

In order to be effective, navigation systems must be designed to meet mission requirements in four primary
areas: accuracy, integrity, continuity, and availability. Accuracy is the ability of the system to estimation position
and/or orientation relative to the true values.  Integrity is the ability of the system to identify when accuracy is
not meeting desired levels.  Continuity is a measure of the system’s capability to provide uninterrupted, quality
measurements.  Availability is the overall percentage of time the system is able to provide accurate navigation
information.  Meeting all of these requirements can be very challenging, depending on the mission.

There  are  two  primary  decisions  a  navigation  system designer  must  make  in  order  to  meet  performance
specifications, namely, which (and what number of) sensors to use and how to integrate the sensors into one
solution.  One common example is using updates from a Global Positioning System (GPS) receiver to aid an
inertial navigation unit via a Kalman filter algorithm.  In many cases, additional complementary sensors can be
added to improve the system robustness including: radar measurements, Doppler velocity sensors, barometric
altimeters, sonar, and celestial navigation sensors, to name a few.  

The continually increasing requirements for cooperative engagement in dense urban environments and in areas
where global navigation satellite system (GNSS) coverage is degraded or denied has spurned the development of
novel navigation sensors.  Some examples of these include: optical aiding, laser scanners, magnetic field sensors,
acoustic sensors, pedometry, etc. Many of these sensors utilize signals of opportunity, i.e., signals not designed
for navigation.  As a result, these sensors tend to have nonlinear error statistics.

While  the  standard  Kalman  filter  works  very  well  when  system  errors  are  well-described  by  Gaussian
probability density functions (pdf),  the algorithm can suffer performance degradation or failure when these
assumptions are not met.  This paper will focus on alternative recursive estimation algorithms that are able to
address nonlinear and non-Gaussian navigation problems.  The article is  arranged as  follows.  First,  a  basic
overview of the stochastic estimation problem is presented along with the background of the linear Kalman filter.
Next, the discussion is expanded to include nonlinear stochastic system models which sets the stage for the
discussion  of  nonlinear  estimators.   Finally,  three  classes  of  nonlinear  estimators  are  presented  including:
Multiple Model  Adaptive Estimators (MMAE),  Unscented Kalman Filters (UKF),  and particle  filters  (PF).
Conclusions are drawn regarding strengths and weaknesses of the various classes of nonlinear estimators.

2.0 BACKGROUND ON STOCHASTIC ESTIMATION

The foundation of estimation theory is the development of a stochastic model for a given system of interest.
This  is  motivated  by  the  observation  that  most  real-world  systems  experience  some  degree  of  random
behavior [1].  Sensors never make perfect measurements.  Manufacturing variances cause random variation in
the  performance  of  components.  Even  if  a  system could  be  created  perfectly,  it  must  still  interact  with
uncontrollable, random disturbances in the environment.  Fortunately, stochastic models can be developed that
treat these unknowns in a statistically-rigorous manner.
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A typical  recursive estimation algorithm consists  of  two distinct  operations:  propagation through time and
measurement updates.  The estimator is tasked with maintaining an estimate of the state pdf conditioned on the
collection of measurements.  A sample sequence from time k-1 to time k is

(1)

where  is the system state vector and  is the collection of observations given by

(2)

2.1 Linear Stochastic Systems

A typical linear system model consists of both a dynamic model and a model of the measurement devices.  The
dynamics model can be expressed as a linear stochastic difference equation given by

(3)

where  is the state vector at time k,  is the state transition matrix at time k-1,  is the state vector at
time k-1,  is the control influence matrix at time k-1, and  is the control vector at time k-1, and 
is a random vector representing the uncertainty in the dynamics model. The additive noise vector is zero-mean
and Gaussian with

(4)

where  is the expectation operator,  is the process noise covariance matrix and  is the Kronecker delta
function.

The measurement model can be expressed as:

(5)

where  is the observation vector,   is the observation matrix, and  is a random vector representing the
uncertainty in the measurement model.  The measurement noise vector is zero-mean and Gaussian with

(6)

where  is the measurement noise covariance matrix. 

In the most general case, the probability density function (pdf) of the state vector, conditioned on the prior
measurements, provides all possible statistics that could be used to develop a state estimate.  The conditional pdf
is given by

(7)

where  represents the collection of observations up to, and including, time k.  This is also known
as the a posteriori state pdf.  An example of a typical Kalman filter application is shown in Figure 1.
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2.2 Linear Kalman Filter

The a posteriori pdf is guaranteed to be Gaussian under the following conditions:

• The system dynamics and measurement components consist exclusively of linear models
• The system and measurement noises are white and Gaussian
• All initial conditions can be represented as Gaussian random variables

In this case, the entire statistics of the pdfs of interest can be expressed as a mean vector and covariance matrix.
This unique property is exploited by the linear Kalman filter.

The Kalman filter has two distinct steps: propagation of the mean and covariance between time epochs (i.e.,
propagation), and incorporating a discrete observation (i.e., update).  Given the linear stochastic system model
driven by white Gaussian noise sources shown in (3) and (5), the Kalman filter propagation equations are given
by

(8)
and

(9)

Figure 1. Typical Kalman Filter Application. The estimator produces an optimal estimate of the
system state based on observed measurements and known control inputs.
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where  is the a priori state estimate at time k,  is the state transition matrix at time k-1,  is the a
posteriori state estimate at  time  k-1, is  the  a priori state covariance matrix at  time  k, is  the  a
posteriori state covariance matrix at time k-1, and  is the process noise covariance matrix at time k-1.

The Kalman filter measurement update equations are:

(10)

and

(11)

The Kalman gain, , is

(12)

The linear Kalman filter algorithm is optimal by every conceivable measure, is easily implemented on a digital
computer, and has served as the benchmark standard of recursive estimation algorithms for decades [4].

2.3 Effects of Nonlinearities on the Linear Kalman Filter

While many systems are well-modeled by linear stochastic equations, most real-world applications are nonlinear
at some level.  There are many types of nonlinearities to consider.  Some examples include non-Gaussian noise
sources, saturation effects, nonlinear dynamics or measurement models, and jump discontinuities.  All of these
effects ultimately result  in the true conditional state pdfs being non-Gaussian in nature,  which violates the
fundamental assumptions of the linear Kalman filter [3].

If  the degree of  nonlinearity is  relatively small,  the  extended Kalman filter  (EKF) can provide acceptable
results [3].  The EKF filter design is based on linearization of the system and measurement models using a first-
order Taylor series expansion.  

Although the EKF is very widely used in navigation applications, there are limitations that should be understood.
First, the EKF is subject to linearization errors.  These linearization errors result in incorrect state estimates and
covariance estimates and can lead to unstable operation, known as filter divergence.  EKFs can be extremely
sensitive to this effect during periods of relatively high state uncertainty such as initialization and start-up.  The
second issue is the inherently unimodal assumption of the EKF.  In cases where multi-modal densities are known
to exist, the EKF would not be a good choice.

In the following sections, various types of nonlinear estimation approaches will be addressed.  Each approach
will  be presented along with a typical  navigation application.   The first  approach to address non-Gaussian
densities is the class of Gaussian Sum Filters, namely the Multiple Model Adaptive Estimation technique.

2.4 Multiple Model Adaptive Estimation (MMAE)

The Multiple Model Adaptive Estimation (MMAE) filter extends the linear Kalman filter to address the situation
of  unknown or uncertain parameters in  the system model.  MMAE is  in the  class  of estimators  known as
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Gaussian Sum Filters.  Others in the class include the Interacting Multiple Model (IMM) filter and the Rao-
Blackwell particle filter.   Some examples of applications that fall  into this category include: system failure
modes, unknown structural parameters, “jump” processes, etc. [3].

The MMAE filter represents the state pdf using a sum of individually-weighted Gaussian densities.  This allows
the filter to properly account for complex, non-Gaussian densities.  In this way, the effects of the uncertain
parameters on the overall state pdf are explicitly and directly maintained inside the estimator.  An example of a
sum of Gaussian density is shown in Figure 2.

Consider the system represented by the linear stochastic difference equation (3)

(13)

and corresponding measurement equation (5)

(14)

Figure 2: Example Sum of Gaussian Density. Gaussian sums can be used to
represent a wide variety of densities, including multi-modal densities as shown in

this example.

Nonlinear Estimation Techniques for Navigation

5 - 6 STO-EN-SET-197



which are repeated here for clarity.  Similarly, the noise sources,   and  , are zero-mean and Gaussian with
covariances

(15)

and

(16)

respectively.

In contrast to the standard linear Kalman filter, consider the additional situation where a portion of the system
model parameters are unknown.  These unknowns could be in the structure of the dynamics model (i.e., , ),
in the structure of the measurement model (i.e., ), or in the statistics of the uncertainties (i.e., , ).  Some
examples of applications with these uncertainties include: systems with unknown or dynamic sensor biases or
scale  factors,  system  with  changing  operating  conditions  that  affect  the  linearized  model,  and  tracking
applications where the characteristics of the target are unknown.

The estimation problem becomes that of a dual estimator.  In other words, the unknown parameters must be
included in the unknowns. The MMAE estimator derivation proceeds by defining a new random vector, , that
contains the unknown parameters.  The a posteriori pdf is augmented to create a new, joint a posteriori pdf of
interest

(17)

where  is the system state vector and  is the collection of observations given by

(18)

Equation (17) can be rewritten using Bayes' rule as

(19)

Assuming the parameter vector is of finite dimension  (i.e., ) the parameter density can be expressed as

(20)

Invoking Bayes' rule once again yields

(21)

Finally, invoking Bayes' rule on the numerator and expressing the denominator as equivalent integral of the
marginal density on  gives the following relation

(22)
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It should be noted that the term  is the measurement prediction density conditioned on a known
parameter vector  and all prior measurements.  Given the system model from (13) and (14), this pdf is given by
the following Gaussian density

(23)

where  is the residual covariance given by 

(24)

Finally, the term  is the a priori density of the parameter vector.  Unfortunately, the integral in the
denominator of (22) is intractable in general.  However, if the system parameters can be chosen from a finite set,

i.e.,   then the parameter  density can be expressed as  the  sum of  the  individual

probabilities of the finite set

(25)

where  is the probability weight of the j-th parameter vector, .

Substituting (25) into (22) yields

(26)

Because the probability weights are independent of the integration, the order of integration can be reversed
which results in

(27)

which can be further reduced using the sifting property on the denominator
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(28)

The j-th probability weighting at time k can be defined as the following recursive relationship

(29)

In a similar fashion to (23), the term  is the measurement prediction density based on the j-th 
model.  This pdf is given by the following Gaussian density

(30)

where  is the measurement realization at time k,  is the j-th observation matrix at time k,  is the j-th a

priori   state  estimate,  and   is  the  j-th residual  covariance.   Once  a  measurement  is  realized,  the  j-th
measurement likelihood (30) can be directly evaluated and the associated weight scaled.

Substituting (29) into (28) yields an updated expression of the a posteriori pdf

(31)

Substituting (31) into (19) 

(32)

and finally using the sifting property of the delta function yields a tractable expression for the a posteriori pdf

(33)

which, given the linear, stochastic system model given in (13) and (14) is simply the weighted sum of the output
of J Kalman filters, each based on the parameter vector . This can be visualized as a bank of J independent
Kalman filters as shown in Figure 3.
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The blended state estimate and covariance is given by

(34)

and

(35)

respectively.

The  MMAE filter operating sequence is as follows.  When an observation is made, the residual likelihood is
evaluated for each filter and the corresponding model weight is scaled appropriately.  Models that agree well
with the residual sequence will be increased in weight.  Models that do not agree with the residual sequence will
decrease in weight.  

Figure 3: Typical MMAE block diagram.  The MMAE estimator consists of a bank of independent
Kalman filters, each based on a discrete parameter vector.  
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2.6 Unscented Kalman Filter

As discussed  previously,  the  recursive  estimation  problem is  fundamentally concerned with estimating the
conditional  state  density.   When  dynamic  or  measurement  models  are  nonlinear,  the  linear,  Gaussian
assumptions of the linear Kalman filter are invalidated.  The extended Kalman filter exploits a first-order Taylor
series expansion to approximate the transformation of random vectors through the nonlinearity.  Unfortunately,
this first-order technique can fail when nonlinearities become large.   In addition, the first-order Taylor series
method requires calculation of a Jacobian matrix which is  unnecessary in the unscented and particle filter
algorithms.

The Unscented Kalman Filter  (UKF) exploits  the Unscented Transform (UT) to  transform random vectors
through nonlinearities.  For Gaussian random variables, the UT captures the correct statistics equivalent to a
third-order Taylor series  [7].  In addition, the UT is computationally efficient compared to particle filtering
algorithms.

2.6.1 Unscented Transform

The unscented transform represents a random vector's density as a collection of carefully-chosen “sigma points.”
The sigma points  are chosen so that they can be directly transformed through a nonlinear (or linear) function
while  more  accurately  maintaining  the  statistics  of  true  density.   Consider  the  following  generalized
transformation,  where  is a random vector with dimension ,  is a random vector with dimension

, and  is a mapping function from .  The mean and covariance of  is given by

(36)

and

(37)

respectively.

The first step of the forward unscented transform is to calculate the collection of sigma points,  ,  which is a
deterministic function of  and .  The sigma point matrix consists of  sigma points, , given by

(38)

with the subscript notation representing the column number (e.g.,  is the j-th column of the matrix ), and 
is the Cholesky square root.  The scaling parameter, , is given by

(39)
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The sigma point weights are given by the collection

(40)

The scalars  ,  , and   are tuning parameters that vary the spread of the sigma points. Default  values for
Gaussian densities are , , .

Given a collection of sigma points, the mean and covariance of the random vector is calculated via

(41)

and is referred to as the reverse unscented transform.

A transformation of random variable (e.g.,  ) is accomplished by simply passing each sigma point of  ,
namely , through the mapping function

(42)

to produce a transformed collection of sigma points,  .  Each sigma point has dimension , as given by the
mapping function .  The mean and covariance of  can be recovered using the same procedure given in (41),
namely

(43)

In the next section, the unscented transform will be used as the basis for a recursive estimation algorithm known
as the Unscented Kalman Filter (UKF).
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2.6.2 Unscented Kalman Filter

The UKF algorithm is conceptually similar to the linear Kalman filter.  There are two distinct steps: propagation
of the state vector density over time, and updating the state vector density based on a measurement observation.  

Consider the nonlinear stochastic system model given by

(44)

where the process noise,  , and measurement noise,  , are both zero-mean, independent, white Gaussian
random vectors with covariance  and , respectively. In addition, assume the a posteriori state estimate and
covariance is available at time k-1, (i.e.,  and ).

The first step is to propagate the state vector from time k-1 to time k.  This is accomplished using the forward
unscented transform to create sigma points at time k-1, represented by .  The sigma points are transformed
through the nonlinear system state transition function

(45)

The mean and covariance of  are calculated using the backward unscented transform and the effects of the
process noise are incorporated to produce the a priori state estimate and covariance at time k

(46)

A block diagram of the UKF propagation algorithm is shown in Figure 4.
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The measurement  update  proceeds  similarly,  beginning  with  the  transformation  of  the  a  priori mean  and
covariance into a collection of sigma points,  . These sigma points are transformed into the measurement
space via

(47)

The measurement mean, , covariance, , and cross-correlation matrix,  are calculated as

(48)

Finally, the a posteriori statistics are calculated using the standard Kalman update algorithms, albeit in a slightly
different, but mathematically equivalent, form.  The Kalman gain is given by

(49)

Figure 4: Unscented Kalman Filter Propagation.
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and the state estimate and covariance are given by

(50)

A block diagram of the UKF measurement update process is shown in Figure 5.

In addition to the above algorithm, other UKF algorithms exist to address the case of non-additive noise sources.
The reader is referred to the literature [2],[5] for more details.

As mentioned previously, the UKF has some important advantages over the linear or extended Kalman filter.
First, the UKF algorithm captures higher order statistics than the linear or extended Kalman filter.  In addition,
the requirement to calculate Jacobians is completely eliminated resulting in less chance of errors, especially for
complicated models.  However, there are some disadvantages of the UKF that need to be considered.  First, the
UKF requires slightly more processing time than the equivalent EKF.  Finally, the UKF is still unable to capture
the statistics of multi-modal densities.

2.7 Particle Filter

The class of recursive estimators known as particle filters utilize a different approach for representing the state
pdf, which has the potential to accurately maintain the statistics of interest at an arbitrary level.  Two main
classes of particle filter exist: grid-based or discrete methods, and continuous methods.  Due to space limitations,
only the grid-based particle filter algorithm will be developed in this article.  For additional information on other
types of particle filters, the reader is referred to [5].

Figure 5: Unscented Kalman Filter Measurement Update.
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2.7.1 Propagation

The propagation of the state pdf through time incorporates the stochastic effects of the system model.  This
requires  knowledge  of  the  transition  pdf.   To  accomplish  this  mathematically,  the  property  of  density
marginalization is required.  Recall the marginalization integral

(51)

Substituting our a priori density at time k for  and the a posteriori density at time k-1 for  yields

(52)

where  is the transition density. Because we assume a first-order Markovian system model,
the transition density is independent of the measurement observations, thus

(53)

Substituting (53) into (52) yields the well-known Chapman-Kolmogorov equation

(54)

2.7.2 Measurement Update

The measurement update incorporates the state knowledge gained during the observation by exploiting the
measurement model.  The measurement update is derived by recalling Bayes' rule

(55)

The  derivation  begins  by  separating  the  current  measurement  from the  measurement  collection  in  the  a
posteriori pdf

(56)

Applying Bayes' rule to the right-hand side of (56) yields

(57)
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Because  the  conditional  observation  is  density  is  independent  of  the  prior  observations,  the  following
simplification can be applied

(58)

Substituting (58) into (57) yields the measurement update equation

(59)

where  is the measurement likelihood, and  is referred to as the evidence.  The evidence
effectively serves as a normalization factor to ensure unit area of the a posteriori pdf.  As a final note, applying
the marginalization integral to the evidence yields an equivalent form that will aid our development of the
particle filtering algorithms

(60)

2.8 Discrete Particle Filtering Algorithm

The discrete particle filter is conditioned on the assumption of partitioning the state space into a finite set of
discrete states.  A discrete random variable is characterized by the probability mass function (pmf).  The pmf
consists of a collection of states and corresponding probability weights.  The sum of all weights must equal one.

The delta function can be used to create a mathematical representation of a pmf, for example

(61)

where  is the probability weight for particle j, and  is the discrete state location of particle j.  Thus, the a
posteriori state pmf is given by

(62)

where  represents the probability weight for particle j at time k-1, conditioned on measurements up-to,

and including, time k-1. 

2.8.1 Propagation Relations

Because the discrete states are at fixed locations, only the particle weights change as an effect of propagation and
measurement  updates.   The  propagation  weighting  function  is  derived  using  the  Chapman-Kolmogorov
Equation, presented in the previous section.  Substituting the a posteriori pmf into (54) yields
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(63)

Changing the order of integration and simplifying using the sifting property gives

(64)

Because the state vector is discrete, the transition density can be expressed as

(65)

Substituting (65) into (64) and grouping terms

(66)

The bracketed term represents the particle weights that have been updated by the transition probability (i.e., a
priori particle weights).  Using the notation presented previously, the a priori particle weights are formally given
by

(67)

and the corresponding pmf is given by

(68)

2.8.2 Measurement Update

The measurement  update weighting function is  determined by substituting the  a priori pmf  (68) and (60)
into (59)

(69)
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Applying the sifting property and simplifying yields

(70)

Grouping the weighting terms and expressing using the notation presented previously results in

(71)

with the j-th a posteriori particle weight given by

(72)

3.0 EXAMPLE APPLICATION 

Consider the following two-dimensional vehicle navigation scenario shown in Figure 6.  The vehicle is equipped
with  a  sensor  that  receives  an  RF,  carrier-phase  ranging  signal  from a  constellation  of  transmitters.   The
transmitters are positioned in circular orbits around the area of interest.  For simplicity, time synchronization is
assumed between all devices.  
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The vehicle moves at a known, constant velocity.  The heading can be represented as a first-order Gauss-Markov
(FOGM) process.  Thus, the vehicle stochastic dynamics model can be expressed as

(73)

where  and  are the x-position and y-position at time , respectively,   is the heading,   is the vehicle
speed,   is the sampling interval,   is the FOGM heading time constant, and   is the process noise.  The
process noise is a zero-mean, Gaussian process with

(74)

where  is the variance of the FOGM heading process, and  is the Kronecker delta function.

The measurement equation for transmitter a is given by

(75)

where   and   are the  x and  y locations of transmitter  a at time  k, respectively.  The carrier phase cycle
number is represented by the integer  with wavelength given by . Finally, the measurement noise is 

Figure 6: Simple Navigation Scenario.  The transmitters orbit the area of interest while broadcasting
a navigation signal.
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represented by the zero-mean, Gaussian random variable  with variance kernel

(76)

3.1 Monte Carlo Analysis

The scenario outlined in the previous section is used to evaluate the performance of the extended Kalman filter,
unscented Kalman filter, multiple-model adaptive estimator, and particle filter.  Six scenarios are chosen to
demonstrate the strengths and weaknesses of the various algorithms.  For each scenario, a 30-run Monte Carlo
simulation is performed. Each filter is executed using identical input data and the results for estimation error are
compared.

The scenarios are evaluated for two main cases: known and unknown integer cycle count.  When the integer
cycle count is known, the state estimate is unimodal and appropriate for the EKF, UKF, and particle filter.  When
the integer cycle count is unknown, only the MMAE and particle filter are evaluated as the EKF and UKF would
require modifications to address integer ambiguity resolution methods.

The radius and number of transmitters is varied in order to change the level of nonlinearity and observability of
the system.  The scenarios are arranged in  general  order  of difficulty and are listed in Table 1.  The vehicle
motion parameters are the same for all scenarios with  m/s,  s, and  deg.

Table 1: Transmitter characteristics for UAV navigation scenario example.

Scenario

Initial State
Uncertainty

Standard Deviation
Number of

Transmitter
s

Transmitter Range
(X, Y, Z)

Transmitter
Geometry

Transmitter
Measurement

Standard
Deviation

( )

Transmitter
Wavelength 

( )

1 5 m 5 m 25 deg 3 1000 m Excellent 0.2 m 1 m

2 5 m 5 m 25 deg 3 10 m Excellent 0.2 m 1 m

3 5 m 5 m 25 deg 2 10 m Good 0.2 m 1 m

4 5 m 5 m 25 deg 2 10 m Poor 0.2 m 1 m

5 5 m 5 m 25 deg 1 1000 m Very Poor 0.2 m 1 m

6 5 m 5 m 25 deg 1 10 m Very Poor 0.2 m 1 m

3.1.1 Known Integer Ambiguity

In  the  case  where  the  integer  cycle  number  is  known,  the  problem is  reduced  to  a  simple  problem of
multilateration.   As  the  transmitter  range  is  decreased,  the  observation  becomes  more  nonlinear.   These
nonlinearities are exacerbated as the transmitter geometry results in reduced observability.  The ensemble root-
mean-square (RMS) error and estimator quality histograms for each scenario are shown in Figures 7 – 12.
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Scenario 1 is the least challenging case as the three, well-separated transmitters provide excellent observability
and their  long range from the vehicle reduce the nonlinearity to a very low level.  As expected,  all  of  the
estimators demonstrate consistent and accurate performance for this scenario.  The consistency of the filter is a
measure of the a posteriori state estimate errors relative to the filter predicted a posteriori standard deviation.  In
a well-tuned filter, the error statistics will be consistent with the filter predicted uncertainty.  A filter that is not
consistent  is  reporting  an  inaccurate  confidence  and  is  not  operating  optimally.   In  addition,  the  filter  is
susceptible to divergence.  The next scenario reduces the satellite radius from 1000 meters to 10 meters in an
effort to introduce some nonlinear measurements.

Figure 7: Estimator errors and consistency histograms for Monte Carlo Scenario 1.  In this case, all
filters provide accurate, consistent results.
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In Scenario 2, shown in Figure 8,the increase in measurement nonlinearity is evidenced by an increase in errors
for the EKF and UKF, especially during the first few seconds of operation.  After the initialization period, both
the EKF and UKF converge to performance similar to the particle filter.  In addition, the EKF's error estimate
shows signs of overconfidence as shown by the increase in the tails of the error ratio deviations.  It is interesting
to note that while the UKF shows almost identical estimation errors to the EKF, the UKF does maintain a more
accurate  filter  covariance.   This  is  one of  the  benefits  of  the  UKF.   In  the  next  scenario,  the  number  of
transmitters is reduced from three to two.

Figure 8: Estimator errors and consistency histograms for Monte Carlo Scenario 2.  In this case, all
filters provide accurate, consistent results, although the particle filter demonstrates slightly better

accuracy and consistency.
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In Figure 9, the results of Scenario 3 are shown.  The reduction in transmitter observability results in a reduction
in accuracy for all filters, although the EKF and UKF show the greatest increase in errors.  Additionally, the
consistency of both the EKF and UKF are reduced as shown by the increase in the histogram tails.

Figure 9: Estimator errors and consistency histograms for Monte Carlo Scenario 3.  The particle
filter is producing a more accurate result than the EKF and UKF.  In addition, the EKF's error

estimates are beginning to become overly optimistic. 
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The results for Scenario 4 are shown in Figure 10.  This scenario continues to reduce the observability of the
transmitters by reducing the angular separation.  As seen in the figure, the EKF is demonstrating clear signs of
inconsistency via a markedly overconfident filter.  As mentioned previously, this can lead to filter divergence.

Figure 10: Estimator errors and consistency histograms for Monte Carlo Scenario 4.  Similar to the
Scenario 3, the particle filter is producing a more accurate result than the EKF and UKF.  Both the

UKF and EKF's error estimates are overly optimistic.
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Scenario 5 is a single satellite scenario with relatively low measurement nonlinearities.  In this case, all filters
show good accuracy.  The EKF shows some signs of inconsistent operation, however they are relatively small.
Overall, each filter handles this scenario well.  In the next scenario, the nonlinearities will be increased.

Figure 11: Estimator errors and consistency histograms for Monte Carlo Scenario 5.  In this
scenario, the filters perform similarly due to the relatively low level of nonlinearity. 
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Scenario 6 is the same single transmitter configuration as in Scenario 5, with one important change.  The range
to the transmitter is reduced to greatly increase the level of nonlinearity.   In this case,  the EKF is clearly
diverging.  Not only are the errors increasing rapidly, the filter estimated covariance is extremely optimistic as
evidenced by the high number of error greater than 6 sigma.  The UKF handles the nonlinearities better than the
EKF, although it is still outperformed by the particle filter.

3.1.2 Unknown Integer Ambiguity

In the case where the integer cycle number is unknown, the resulting state density function becomes multi-modal
with each integer ambiguity  combination representing a hypothesis.   Because of this, only the MMAE and
particle filter algorithms are able to properly represent the density.  The MMAE filter is constructed to explicitly
model every ambiguity combination within a 2-sigma bound of the initial state error.  

The two algorithms are compared for Scenarios 1 through 3.  The ensemble root-mean-square (RMS) error and
estimator quality histograms for each scenario are shown in Figures 13 – 15.

Figure 12: Estimator errors and consistency histograms for Monte Carlo Scenario 6.  In this
example, the EKF is beginning to diverge, producing inaccurate and overly confident estimates.
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Scenario 1 combines nearly linear measurements with an overdetermined number of satellites in an excellent
geometric  configuration  (i.e.,  highly observable  state).   As  such,  both  estimators  converge  to  an  accurate
solution.  There is some inconsistency observed in the MMAE error ratios, however this is likely due to the
selection of the initial ambiguity hypothesis bound which has the effect of making the MMAE algorithm slightly
overconfident.  In the next scenario, the transmitter range will be reduced which increases the measurement
nonlinearity.

Figure 13: Estimator errors and consistency histograms for Monte Carlo Scenario 1.  In this
example, both the MMAE and particle filter are able to converge to an accurate state estimate.
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Scenario 2 increases the nonlinearity of the observations by reducing the transmitter range.  Both estimators are
still able to converge to an accurate solution.  As a result of the nonlinearities, however, the MMAE algorithm's
filter uncertainty is slightly optimistic as seen by the increase in the tails of the normalized error ratios.

Figure 14: Estimator errors and consistency histograms for Monte Carlo Scenario 2.  Both
estimators converge to an accurate solution, however the uncertainty for the MMAE algorithm is

beginning to show signs of inconsistency.

Nonlinear Estimation Techniques for Navigation

STO-EN-SET-197 5 - 29



Scenario 3 maintains the measurement nonlinearity of Scenario 2, but reduces the number of transmitters from
three to two.  In this case, the MMAE algorithm is unable to converge to an accurate solution while the particle
filter seems unaffected.  

In the remaining scenarios (4 through 7), both estimators fail to converge to an accurate solution during the
simulation time.  The general trend of the consistency results remain the same, i.e., the MMAE algorithm shows
a decrease in consistency when the nonlinearities increase.  

In the next section, the computational burden of each algorithm is presented.

3.1.3 Processing Time Analysis

The nonlinear estimation algorithms presented in this article require varying levels of processing time.  In the
example, the algorithms were implemented in Matlab and all Monte Carlo simulations were timed to provide a
rough measure of comparison.  None of the algorithms were optimized or vectorized.  The processing time
results are shown in Table 2.  All times are normalized to the time expended by the EKF algorithm.

Figure 15: Estimator errors and consistency histograms for Monte Carlo Scenario 3.  In this
example, the particle filter is able to converge to an accurate solution while the MMAE algorithm is

unsuccessful.
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EKF UKF
MMAE

(1 transmitter,
21 hypotheses)

MMAE
(2 transmitters,
441 hypotheses)

MMAE 
(3 transmitters,

9261 hypotheses)

Grid Particle
Filter 

(~1.2 M cells)

Normalized Time
(relative to EKF)

1 ~1 7 15 400x 425x

Table 2: Comparison of processing time for various nonlinear estimation algorithms.

The results clearly show the computational burden of the particle filter and the MMAE filter as the number of
hypotheses  becomes  large.  One  of  the  known  drawbacks  of  particle  filtering  methods  is  computational
complexity,  especially in  high  dimensional  state  spaces.   Optimization and parallelization  techniques  have
demonstrated substantial improvements in processing time for particle filters.  The significant computational
burden of high-dimensional particle filters is a considerable drawback for real time environments.

4.0 CONCLUSIONS AND DISCUSSION

In this article, the foundations of nonlinear estimation theory is presented along with a number of nonlinear
estimation  algorithms.   The  ability  of  each  algorithm to  properly  model  the  effects  of  various  types  of
nonlinearities is shown by analysis and via a simple example.  The results show that as the nonlinearities are
increased, both the accuracy and consistency of the EKF are decreased.  This is a well-known issue with the
EKF  and  is  one  of  the  main  reasons  to  choose  a  more  advanced  nonlinear  estimator  when  moderate
nonlinearities are expected.

For random vectors with unimodal densities, the UKF is a compelling choice.  In all cases shown in the test
scenarios, the UKF shows equal or better accuracy than the EKF.  Moreover, the UKF maintains a much more
consistent state covariance estimate.  The importance of consistency cannot be overemphasized.  The ability of
an estimator to produce an accurate estimate of the quality of its performance is a key component in a system
with integrity requirements.  In addition, the UKF does not require significantly more processing resources than
the EKF.

Given unlimited computational resources, the particle filter would always give the most accurate estimation
performance.  Unfortunately, this is oftentimes impractical, especially for high-dimensional state vectors.  In the
simplest construction, the memory and processing requirements rise geometrically with the number of states.
This can quickly become untenable.  To compensate for this known limitation a number of different particle
filtering strategies have been presented in the literature [5],[6],[2].  The general approach is to focus the particles
only in the areas of highest likelihood, thus maintaining the important modes of the density with a minimum of
resources.  This is currently an area of active research.

For military navigation systems, integrity and accuracy are paramount.  While this application area has been
dominated by the EKF to this point, the advent of non-traditional aiding sources motivates a more advanced
filter.  The UKF is well-suited to meet future needs due to its demonstrated ability to accurately and consistently
work with low-to-medium nonlinearities while maintaining an acceptable computational burden. 
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